du COlloque FRancophone en Energie, Environnement, Economie et Thermodynamique

COFRET 2020 - 2021

ENERGY - ENVIRONMENT Optimizations and Constraints

Michel FEIDT

Université de Lorraine, Nancy, France

Content

- 1. Introduction: state of the art
- 2. A case study: real irreversible engine
- 3. Extension to thermo-economics and others
- 4. A new paradigm: transfer and conversion compromise
- 5. Conclusion Perspectives

1. Introduction - state of the art

• Concept of efficiency:

– Carnot efficiency,
$$\eta_C = 1 - \frac{T_{CS}}{T_{HS}}$$

Curzon - Ahlborn efficiency,

$$\eta_{CNCA}(Max W) = 1 - \sqrt{\frac{T_{CS}}{T_{HS}}}$$

1. Introduction - state of the art

- Applications to various engines
 - Otto, Diesel (Mirabet, 2002)
 - Brayton-Joule, Braysson (Feidt, 1996)
 - Stirling Ericsson (Costea, 1997)

1. Introduction - state of the art

- the clump (cluster) for endoreversible models
 - with heat losses
 - with fluid flows, ...
- the environment constraint (Angulo Brown, 1991)
 - → ecologic efficiency
- the economic consideration (Gögus, 2002)

1. Introduction - state of the art

Partial conclusions:

Endo-reversible case with finite heat source

$$\eta(Max \, \dot{W}) = 1 - \sqrt{\frac{T_0}{T_{HSi}}}$$

1. Introduction - state of the art

Systematic of imperfect cycles (tentative)

(Feidt, 1997)

$$\eta_{endo\ nonadiabatic} < \frac{\varphi}{1+\varphi}$$

$$\eta(Max\ \dot{W}) = 1 - \frac{1}{1\sqrt{+\varphi}}$$

with
$$\varphi = \frac{\dot{Q}_{HS}}{K_L T_{CS}}$$
 \Rightarrow F.P.D.T.

2. Extension to irreversible engines

2.1. Endo-irreversible Carnot engine

Two approaches:

- ratio method (Novikov, Ibrahim)
- entropic approach (Feidt, Ejap)
- \Rightarrow new forms of the nice radical

3. Thermo-ecological criteria

- Extension of Angulo Brown criterion:
 - ecological objectif of the converter

$$(\dot{W} - T_0 \dot{S}_I) = \dot{Q}_H \left(1 - \frac{T_0}{T_H} \right) - \dot{Q}_C \left(1 - \frac{T_0}{T_C} \right) - 2T_0 \dot{S}_I$$

• ecological objectif of the system

$$(\dot{W} - T_0 \dot{S}_{IS}) = \dot{Q}_H \left(1 - \frac{T_0}{T_{HS}} \right) - \dot{Q}_C \left(1 - \frac{T_0}{T_{CS}} \right) - 2T_0 \dot{S}_{IS}$$

3. Thermo-ecological criteria

• Ust's criterion of the converter

$$ECOP_{conv} = \frac{T_0 \dot{S}_I}{\dot{W}}$$

• Ust's criterion of the system

$$ECOP_{system} = \frac{T_0 \dot{S}_{IS}}{\dot{W}}$$

3. Thermo-ecological criteria

- Exergetic criterion:

$$\eta_{EXS} = \frac{(\dot{Q}_{HS} - \dot{Q}_{LS}) \left(1 - \frac{T_C}{T_H}\right) - T_C \dot{S}_I}{\dot{Q}_{HS} \left(1 - \frac{T_0}{T_{HS}}\right)}$$

relative energetic efficiency (to the ambiance)

$$\eta_{ExS}(T_0) = \frac{(1-r_L)\eta_{IConv} - \frac{T_C}{T_{HS}}r_L}{\eta_{I}(T_0, T_{HS})}$$

3. Thermo-ecological criteria

absolute energetic efficiency $(T_0 = 0 \text{ K})$

$$\eta_{ExS}(0) = (1 - r_L)\eta_{IConv} - \frac{T_C}{T_{HS}}r_I$$

quality factor

$$fq(T_{CS}, T_{HS}) = \frac{(1 - r_L)\eta_I(T_C, T_H) - \frac{T_C}{T_{HS}}r_I}{\eta_I(T_{CS}, T_{HS})}$$

identical to Second Law efficiency when $T_{CS} \equiv T_0$

4. Transfer and conversion compromise

4.1. Power - efficiency compromise

O.F.:
$$\alpha \dot{W} + \beta_{\eta I} \dot{Q}_0$$

$$\dot{W} = K_L (T_S - T_{HS}) \left(1 - \frac{T_0}{T_{HS}} \right)$$

$$\eta_I = 1 - \frac{T_0}{T_{HS}}$$

$$T_{HS}^* = \sqrt{\frac{T_0(\alpha K_L T_S + \beta \dot{Q}_0)}{\alpha K_L}}$$
, where $T_S = T_0 + \frac{\dot{Q}_0}{K_L}$

with irreversibility: loop curve

4. Transfer and conversion compromise

4.2. Optimum global efficiency for investment constraint

$$C_0 = C_T \frac{\eta_T}{1 - \eta_T} + C_C \frac{\eta_C}{1 - \eta_C}$$

O.F.
$$\eta_G = \eta_T \cdot \eta_C$$

$$\eta_i^* = \frac{2 + C_i \alpha - \sqrt{(2 + C_i \alpha)^2 - 4}}{2}$$

(method)

4. Transfer and conversion compromise

4.3. Another compromise: investment - operation

O.F.
$$C_G = v_I \frac{\eta_G}{1 - \eta_G} + v_F \frac{1 - \eta_G}{\eta_G}$$

$$\eta_G^* = \frac{\sqrt{v_I}}{\sqrt{v_I + \sqrt{v_F}}}$$

$$\min C_G = \frac{v_I^2 + v_F^2}{\sqrt{v_I \cdot v_F}}$$

5. Conclusion - perspectives

Attention should be given to:

- > the concepts
- > the modelling of the studied system

Multumesc mult pentru atentie! Thanks for your attention!

Babele (Old Women) - Bucegi Mountains, Romania